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Abstract. Results are presented of molecular-dynamics experiments in which the Lennard- 
Jones liquid is cooled isobarically into the metastable temperature region. At  a reduced 
temperature T =  0.45 a specific-heat anomaly is observed. Results are given for the density 
and current-density correlation functions. The variation of viscosity and coefficient of self- 
diffusion with temperature can be fitted to a power-law behaviour with an exponent ,u = 1.8, 
in close agreement with predictions of recently proposed mode-coupling models. 

1. Introduction 

In the past few years, considerable theoretical and experimental attention has been paid 
to the area of the liquid-glass transition. In the domain of kinetic theories, much progress 
has been made, because these provide a mechanism for the glass transition and, at least 
in principle, incorporate a lot of phenomenological detail that can be compared with 
experimental observations. A number of models based on mode-coupling approxi- 
mations have been proposed [l-61. Some of the thermodynamic aspects of the liquid- 
glass transition, such as the changes in thermodynamic quantities across the glass tran- 
sition, have been described within this framework [ 5 ] .  

On a rather general basis, work by Gotze et a1 [4,6] has supplied certain dynamic 
scaling laws that should hold for the dynamic structure factor of the undercooled liquid 
near the glass transition. Recent neutron scattering studies [7] seem to support these 
predictions. 

However, it was found that the simpler mode-coupling models are valid only in a 
limited temperature region above the glass transition, and that close enough to the 
transition they break down. In later extensions, possible explanations have been given 
for this breakdown. Gotze and Sjogren [6] introduced in their model equations a small 
regular contribution to the memory function of the density-density correlation function, 
which may model in a relatively simple way the non-ideality of real glass-formers and 
perhaps account for the observed differences between different classes of glasses. Das 
and Mazenko [8] started from a field theoretical approach, which allows a systematic 
handling of the couplings between the hydrodynamic fluctuations. They found that the 
non-linear feedback mechanism, which causes the sharp singularity in the simpler mode- 
coupling models, is still present but is cut off, which results in a rounded transition. All 
these theories, and especially later ones, have the drawback that numerical calculations 
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can only be performed for the simplest model systems and even then have to make crude 
simplifications, the consequences of which are hard to estimate. Calculations on the 
basis of a mode-coupling model by Bengtzelius et a1 [3] were carried through by the first 
for the Lennard-Jones (LJ) system [9]. 

This was one of the main reasons for us to take to computer simulations to test the 
results of theoretical predictions. Earlier work in this area was carried out by Fox and 
Andersen [ 101 and U110 and Yip [ 111. Although really long timescales cannot be probed 
by molecular dynamics (MD) techniques, MD simulations can still be useful because 
the onset of glass formation stretches over so many decades in timescale in a small 
temperature region. MD may also yield information about the kind of collective motions 
that remain accessible for the system at low temperatures. In this paper, we restrict 
ourselves to a presentation of our results on the thermodynamics and dynamics of the 
Lennard-Jones system in the supercooled region. In contrast to the work of Ullo and Yip, 
we consider explicitly the temperature variation of various quantities in the supercooled 
regime. Where possible, we shall compare our data with other experimental findings 
and theoretical predictions. Preliminary results of this work were presented in [ 121. 

2. Molecular-dynamics experiment 

The simulations were carried out for a system of 958 particles interacting through a 
Lennard-Jones (6, 12) potential, truncated at r = 2.5 a a n d  shifted to make it smooth at 
the cut-off radius. Throughout this paper, quantities are expressed in reduced units, as 
usual. We used Nose’s [ 131 constant-temperature and -pressure dynamics. In constant- 
temperature dynamics all degrees of freedom are coupled continuously in time to an 
external heat bath, and this allows one to cool the system in a way least distorting the 
evolution of the system. The constant-pressure method allows fluctuations in the volume 
of a MD cell. A fixed volume could be an unrealistic extra impediment for liquid-like 
relaxations, as Fox and Andersen pointed out [lo]. For this reason we used the constant- 
pressure method. We did not observe the stress tensor to become significantly non- 
isotropic, so we believe there is no need for applying the general Parrinello-Rahman 
[14] dynamics. 

We made slight modifications in Nose’s dynamics. Our extended system Hamiltonian 
for the isothermal-isobaric ensemble reads 

H = xp:/(2m,V2/3s2) + @(Vl’’q,) + p : / ( 2 Q )  + p e x V  
I 

+ gkB Th(S)  + p $ / ( 2 w S 2 )  - kBTh(V/Vo) 

=Ho +p,2/(2Q) +pexV+gkBTh(s)  +p$/(2WS2)- kgThl(v/Vo). 
Here Vis the volume of the system, @ the potential energy, pex  the externally applied 
pressure and s the time scaling parameter introduced by Nose. The parameter s rep- 
resents the coupling to a heat bath, and relative changes in s correspond to heat absorbed 
or given off by the bath. The q, andp, denote the scaled coordinates and momenta of the 
particles; pv and p s  are the momenta conjugate to V and s respectively. Inertia is 
associated with both the parameters and the volume motion: there are kinetic energy 
terms containing masses Q and W. The last term in our Hamiltonian is not present in 
the constant-pressure Hamiltonian originally proposed by NosC. It is introduced to give 
the correct ensemble averages in the case where the total momentum is conserved, as in 
a MD system. Vu is arbitrary, and it does not affect the equations of motion. More 
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important is the factor 1/s2 that we introduced in the kinetic energy term of the volume 
fluctuations. With this factor, all the equations of motion, including the equation of 
motion for the volume fluctuations, become scale-invariant (covariant) under a rescaling 
of the s parameter. This is as it should be, because the absolute value of the s parameter 
has no physical meaning, but only the relative change ins ,  this being proportional to the 
heat absorbed by the heat bath. Without this factor, one runs into problems with cooling 
simulations. During quenching, heat is being absorbed by the heat bath, and as a 
consequence the s parameter rises. This alone is sufficient to cause the volume fluc- 
tuations to become more and more rapid in real time. At a certain value of s, the 
volume fluctuations have become so rapid that the simulation is unstable and the system 
explodes. With this factor, the volume fluctuations have only a modest temperature 
dependence and the system behaves well down to the lowest temperatures used. 

All simulations were carried out along the isobar of p = 3.20 &/03. To reach a state 
in the supercooled liquid we always started at T = 1.0 ElkB, where the liquid is stable, 
and subsequently cooled down the system. The runs were performed using a time step 
of about 0.004 z (where z * = mo2/&). We generated configurations in the undercooled 
liquid region in two ways: stepwise cooling and continuous cooling. In stepwise cooling, 
the system was repeatedly equilibrated for lo3 time steps, simulated for lo4 time steps 
and then instantaneously quenched over a fixed temperature interval of 0.1 &/kB. This 
means an average cooling rate of 2.2 x &/kBz, which corresponds to 1.2 X lo1’ Ks-I 
for argon. With this method, we did several quenches, starting from several independent 
configurations in the liquid. In continuous cooling, we separated cooling and production 
runs. A cooling run was performed by lowering the temperature by a fixed small 
percentage every time step. In this manner, the cooling rate was proportional to the 
temperature, and therefore higher at high temperatures where the system still can 
follow, and lower at low temperatures: about 9 X &/kBr on average. At several 
temperatures during such a quench, configurations were saved as starting configurations 
for subsequent production simulations. In general, we prefer the second method, mainly 
because of run-time economy. With this technique a single quench is sufficient for a low- 
temperature simulation, whereas with stepwise cooling a whole series of simulations at 
higher temperatures must be carried out. 

Simulating a system that becomes increasingly non-ergodic near the glass transition 
means that one can no longer rely purely on time averaging. The way to overcome this 
problem is to repeat quenches, starting from ‘independent’ configurations in the liquid, 
and average over different quenches. Because time averaging becomes inefficient, there 
is really no need to extend simulations to longer times than necessary for attaining the 
desired time range of the time correlation functions. 

An important problem and another reason for keeping simulations as short as 
possible must be discussed here. Bengtzelius et a1 [3] argued that, because in their mode- 
coupling model all correlations between more than four particles are wiped out of 
the equations, crystallisation, which requires complex particle rearrangements, is not 
present. This is not so in real systems, of course. The Lennard-Jones system in particular 
is a poor glass-former and quite unstable against crystallisation. For this reason, a great 
many of our simulations had to be discarded. To reduce the crystallisation probability 
we kept our simulations short. At first, we trusted any occurrence of crystallisation to 
develop in a relatively short time interval and to show up clearly as a sudden release of 
potential energy and a decrease in the cell’s volume, and also as the appearance of 
crystalline peaks in the radial distribution function. This was also assumed by Fox and 
Andersen [lo],  and, in one particular MD study, observed by Hsu and Rahman [15]. 



4994 M J D Brakkee and S W de Leeuw 

Later on, this assumption proved to be too simple; crystallisation may indeed happen 
quite suddenly (with respect to the total simulation time) but it can also develop gradually 
in time. The critical nucleus may have formed before the crystalline peaks in g ( r )  are 
visible [16]. Therefore, in addition to the signs already mentioned, we developed a 
method for checking on FCC crystallites in the real-space configuration and used a (at 
present heuristic) criterion to discriminate between ‘good’ and ‘bad’ configurations on 
the basis of this analysis. By only doing simulations starting with configurations in which 
FCC crystallites with size larger than a certain critical size were absent, we were able to 
increase the success rate of production runs (which meant quite a saving of computer 
time). One may question the meaning of the results obtained by such a selection 
procedure. We shall postpone that discussion to the last section of this paper. From this 
analysis, we found that below T 15 0.3 in almost all cases the maximum crystallite size 
increased, regardless of the initial value. A similar observation was made by Honeycutt 
and Andersen [ 161 in their study of crystallisation of Lennard-Jones clusters. This means 
that below temperatures T = 0.3 the system is unstable with respect to crystallisation. 

3. Results 

3.1. Thermodynamic quantities 

We kept track of the volume and enthalpy during the simulations. As a function of 
temperature, these data follow a curve whose slope is everywhere almost constant except 
for a certain small temperature region where it changes smoothly, corresponding to a 
smoothed step in the respective temperature derivatives a,, and C,,. This feature is well 
known in experiments and is considered as marking the glass transision. To display 
this change in slope clearly we subtracted from our data a straight line with a slope 
approximately equal to the average of the slopes on both ends of the transition (see 
figure 1). With both continuous and stepwise cooling a cross-over from typical liquid- 
like to solid-like values of a,, and C,, was observed. Usually in experiments on glass- 
forming liquids this transition region is quite small and almost coincides with the iso- 
viscous glass transition temperature (often defined as that temperature where the shear 
viscosity q = 1013P). It is therefore not uncommon to associate the glass transition 
with this transition region. By fitting straight lines to both ends of the transition and 
determining their intersection, a glass transition temperature Tg is phenomenologically 
defined. Thus, from our data, Tg 2- 0.45 Elkg.  At this temperature, the density is about 
p = 0.98. The transition region is quite broad, A T / T g  2- 0.2. In recent experiments on 
organic glass [17] micrometre-sized droplets of the liquid were cooled at very high rates 
(>10’K s-’). The step in C,, was observed at a much higher temperature than the 
isoviscous temperature Tg. Therefore, following the terminology of this paper, it is more 
correct to introduce another temperature. the fictive temperature T,, to denote this 
transition point. It is called by that name because below this temperature the liquid is 
non-ergodic (within experimental tirnescales). One observes averages over a limited 
region of phase space, where the structure is identical to the liquid structure at T f  because 
structural relaxation does not occur within the duration of the experiment. For this 
reason, at T f  observed properties start to deviate from the metastable liquid curves 
below T f .  In these terms we find that in our simulations we observe a glass of fictive 
temperature Tf 2- 0.45 Elkg. 

3.2. Dynamic quantities: single-particle properties 

In all our simulations we calculated the mean-square displacement of the particles. 
We obtained the self-diffusion coefficient D from these data. Also, in one series of 
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Figure 1. Temperature dependence of (a )  the volume and ( b )  the enthalpy per particle. 
The average temperature dependence is subtracted to magnify the change in slope. The 
intersection of the two straight-line extensions determines the cross-over temperature T,. 
Two cooling regimes: (U) stepwise cooling; ( x )  continuous cooling. 

simulations, we calculated the self-intermediate scattering function F,(k ,  t) .  From these 
we extracted more accurate values for D by fitting to 

exp[ - k 2 D t  + E( t )k4  - F(t)kh + . . . ] 
which is the asymptotic form of F,(k.  t )  in the case of normal particle diffusion. We used 
a few extra coefficients E(t ) ,  F ( t ) ,  . . . , to allow for non-Gaussian effects in the limited 
time range of the simulation. The mode-coupling theories predict that the shear viscosity 
q is proportional to ( T  - To)-@ near the glass transition. If we assume that D remains 
approximately inversely proportional to q (or, more generally, (dy/dT) (dD/d r )  does 
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Figure 2. Diffusion coefficient D / ( u 2 / r ) ,  calculated in two ways: (U) obtained from the 
mean-square displacement of the stepwise cooling runs; ( X )  from self-intermediate scat- 
tering function of continuous cooling runs. 

not diverge near the glass transition) a similar power law must also hold for D .  In figure 
2 our data are presented in a way to show this possible power-law dependence with To = 
0.27. In that case, a = 1.8, the fit is good for T 3 0.3 ElkB, below which temperature the 
data become more and more scattered and start to deviate. The value a = 1.8 is typical 
of the theory, but the data may be fitted by a narrow but rather stretched out set of points 
in the (To ,  a) plane. The scattering of the data may be due to two effects. The first is 
increasing non-ergodicity, which means that time averaging becomes ineffective to 
sample contributions of all relevant phase space. This effect may be quite strong because 
of the limited size of the MD sample. The second effect is the instability of the liquid, 
which may cause some simulations to tend to crystallisation though it is not yet clearly 
visible in, for example, the radial distribution function. About T = 0.3 &/kB and below 
the data veer away from the power law; at To we still measure finite values for D .  This 
is entirely consistent with experimental observation that the shear viscosity follows a 
power law in a limited temperature region above To and then crosses over to, possibly, 
Vogel-Fulcher or Arrhenius behaviour. Experimentally, To is always found higher than 
Tg. If a viscosity of l O I 3  P (for argon) could be measured for this system, it would be at 
a temperature below To. We found Tf > To and we cannot say anything about Tg. 
Theoretically, the status of an isoviscous Tg is of course problematic, for one thing 
because it does not scale according to the principle of corresponding states for LJ systems. 

Often long-time tails in the glass transition region are described by a stretched 
exponential exp[ - ( t / t )B]  with /3 typically 0.5. The function F,(k, t )  can be well fitted by 
this form fort > 4t. At high temperatures in the liquid we see no deviation of exponential 
decay. At  lower temperatures, in some simulations the decay is clearly non-exponential. 
However, /3 is not sharpiy defined from these fits and the optimum values of /3 show no 
consistent picture as a function of temperature. Bengtzelius, in his calculations [9], found 
that in the intermediate time region F(k ,  t )  yielded a kind of separability law 

F ( k ,  t )  = a(k )  exp[ -b(k)c( t )] .  
We tried to use this form for our F,(k, t )  data, and it fits them well. We hoped that 
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in this way a c( t )  could be determined that has less statistical error than F,(k, t )  for any 
individual k-value, but since the fluctuations for different k are strongly correlated, no 
accuracy is gained. In the case of normal diffusion, c( t )  is proportional to time and b(k)  
sets off as k2 for small k .  

3.3. Dynamic quantities: collective properties 

We calculated the following time autocorrelation functions: 

F ( k  4 = (”(O)P-k(Oj 

C , ( k  4 = ( ~ / ” L ( O ) ~ L ( 9 )  
C , ( k  t> = ( 1 / W h ( O )  -”)> 
CKE(k3 t )  = ( l /N) (KEk(o )KE-k ( t ) j  

and 

Here p,, j i , j i ,  KE, and dv denote density, longitudinal current, transverse current, 
kinetic energy and the off-diagonal element of the stress tensor, respectively, according 
to 

C,(t) = (cr”(O)a”(i)). 

Pk ( t )  = 2 exp[ik r, (t>l 

j : ( t )  = c. { k  * u,(t)l/k2> exp[ik * r,(t)l 

I 

I 

j i ( t )  = 

K E k ( t )  = C. [u,2/(2m>] exp[ik. r,(t>l 

{k x [k  x ul( t>l /k2> exp[ik rl ( t )]  
I 

I 

and 

OXJ ( t )  = 2 [mv; ( t ) v i  ( t )  + F;(t)rl ( t ) ] .  
I 

The most important of these functions is of course the intermediate scattering 
function F(k ,  t ) .  We plotted it for three different temperatures and three different k- 
values in figure 3. As the temperature is lowered, its relaxation can be described 
qualitatively as consisting of two parts, a fast relaxation due to vibrations, whose 
relaxation time does not change much, and a slow structural relaxation, whose relaxation 
time grows dramatically on lowering the temperature, due to structural arrest. This 
structural slowing down was also observed by U110 and Yip [ l l ] .  It is strongly k- 
dependent, the structural arrest being most pronounced at wavenumbers corresponding 
to the position of the main peak in the static structure factor S(k) .  This behaviour is 
reflected by the kinetic-energy correlation function, and at first sight it seems strange 
that it should do so, because one does not expect any divergence in the heat conductivity: 
heat should always flow about freely and not be obstructed by structural arrest. The 
explanation is that, though indeed kinetic energy is evenly spread out among the 
particles, it is always located on the particles and in this way its k-dependent correlation 
function reflects the structural slowing down. It is in fact straightforward to show that, 
for sufficiently large t ,  

1 m2 
cKE(k ,  t> = - (E 7 u , (o>*u , ( t>~  exp[ik r , (~>lexp[- ik  - r,(t) l)  

( 1  

= ( m 2 / 4 ) ( u 2 j 2 F ( k ,  t )  = (3kBT/2 )*F(k ,  t )  
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.. Figure 3. Normalised density-density cor- 
relation function F ( k .  t ) / S ( k ) :  ( a )  T =  
l . O ~ / k , .  (-) k = O . ~ U - ' ,  (---) k = 
3.4 U - ' .  (. ' . ,) k = 6.8 U- ': ( b )  T = 0.6 E /  

k,. (--) k = 0.6 U I, (---) k = 3.5 U- I ,  

-.5 f ! I I I ( . . . . . )  k = 7 . 0 6 ' ;  ( c )  T = 0 3 & / k B ,  
0 5 10 15 20 (--) k = 0.6 U - ' ,  (---) k = 3.6 U - ' .  

t* ( . . .  ,.) k = 7.2 U I. 
(c) 

so the long-time tails in the kinetic-energy autocorrelation function are entirely deter- 
mined by the density correlation. We tested this relation in our simulations and found 
that it is perfectly valid. Similarly, all wavevector-dependent correlation functions of any 
single-particle property with non-zero time average that for t+ x has no autocorrelation 
and no cross-correlation with position may be expected to display the same long-time 
behaviour as F(k ,  t ) .  

In the dynamic theories, the important parameter is the so-called non-ergodicity 
parameter, the infinite-time limit of the normalised density correlation function, 

f k  = lim F ( k ,  t ) / S ( k )  
1- = 

because (in the idealised glass) it is singular across the glass transition, zero in the liquid 
and finite in the glass state. In reality, this singularity will only exist approximately, 
because eventually F(k,  t )  will always go to zero because relaxation processes still occur 
in the glassy state, albeit at an extremely slow rate. Still, one may try to compare F(k,  t = 
large) with theory. Calculations based on mode- coupling approximations lead to a non- 
ergodicity parameterf, that is similar in shape to S ( k )  and with its main peak coinciding 
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I 

Figure 4. Plot off, = F(k ,  t = 20 r ) / S ( k )  for T = 0.26 E l k B .  The limited number of k-values 
cannot display all detail, but the peak at 7 U - '  is prominent. 

with the main peak in S ( k ) .  Figure 4, which shows F(k,  t = large) for T = 0.26, dem- 
onstrates this clearly, and in this respect the mode-coupling approach seems to work. 

The longitudinal current correlation function does not contain new information, 
as it is proportional to the second time derivative of F ( k ,  t ) .  The transverse current 
correlation function does not have such a simple relation to F(k. t ) .  In a solid, transversely 
as well as longitudinally propagating density fluctuations exist. In a liquid, transverse 
sound may exist at short wavelengths, but vanishes for small enough k .  However, as 
viscosity increases, the liquid becomes more and more solid-like and transverse sound 
appears at relatively long wavelengths and small frequencies, as can be seen in figure 5. 
At a certain temperature, the response is almost perfectly elastic; the w = 0 limit of the 
spectrum tends to zero. 

The stress-tensor correlation function provides the route towards the shear viscosity 
through the Green-Kubo formula: 

r = ( B P )  [,x d t  C U ( t > .  

Of course, the ( k ,  w)-dependent shear viscosity may be determined from the transverse 
current correlation function, but, in an MD sample of limited size, extrapolation to the 
w = 0, k = 0 limit may be suspect. In figure 6, we plotted the normalised C, for three 
different temperatures, and its relaxation is clearly seen to become slower and slower. 
Cu is very sensitive to instabilities in the system and contains a lot of noise. As long as it 
decays to zero within the duration of the simulation, q can be calculated reliably. When 
C, does not decay to zero within the simulation, one can still estimate 7 by assuming 
exponential decay, but of course, at low temperatures when there is very little relaxation, 
this will only give an indication of the order of magnitude. Our viscosity data, presented 
in figure 7, show a picture similar to our self-diffusion data: a power law, in agreement 
with mode-coupling predictions, is valid in a certain temperature region, but within 
experimental accuracy one cannot really discriminate between this behaviour and other, 
more traditional, functional forms for the temperature dependence of the viscosity. 
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Figure 5 .  Spectrum of transverse current correlation function at k = 0.6 U - ' :  (-) T = 
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t* 
Figure 6 .  Normalised stress-tensor correlation function: (-) T = 1.00 e lkB;  (---) T = 
0 . 6 0 & / k , ; ( . . . . )  T = 0 . 3 0 ~ / k B .  

In the temperature region T > 0.3 &/kg mode-coupling predictions work qualitatively 
well. Power-law behaviour of the shear viscosity, q cc 1 T - ToI-", and of the self- 
diffusion coefficient, D CC 1 T - ToI ", with an exponent CY of about 1.8, the theoretical 
value, is followed up to this temperature, if a To of about 0.27 &/kg is assumed. The value 
of To lies well below the temperature T,, where the anomalous behaviour in the specific 
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1004 I 1 , , 1 1 1 ,  , I I 1 1 1 1 1  
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Figure 7. Viscosity a/(.% / a 3 )  versus temperature: (0) stepwise cooling; (x)  continuous 
cooling. 

heat C, and thermal expansion coefficient aP is observed. This is what one would expect 
for experiments at a finite cooling rate if the transition is ideal, i.e. if the critical 
correlation time diverges at To: irrespective of the cooling rate the system leaves equi- 
librium at some temperature above To. In real systems relaxation times remain finite, and 
Tfmay be found below To provided one quenches slowly enough. Indeed, experimentally 
one usually observes To to be well above Tf [18] and near Tf the temperature variation 
of the viscosity deviates strongly from the simple power-law behaviour predicted by 
mode-coupling theories. We attribute the reversed order of our Tf and To with respect 
to what is found in real systems to the extremely high cooling rate in our simulations, 
which causes the supercooled liquid to leave equilibrium at temperatures well above the 
isoviscous glass transition temperature Tg. This has also been observed in rapid cooling 
experiments on microdroplets [17]. The limited accuracy of our data, especially below 
T = 0.45 Elkg, does not allow us to rule out other formsfor this temperature dependence 
in favour of the mode-coupling form. Indeed, in real systems where q can be measured 
accurately over many decades, no universal relation has yet been found covering the 
viscosity behaviour over the whole temperature range of the supercooled liquid. 

More positively, the simulations clearly reveal the importance of k,,, = maximum 
of S ( k ) .  The resemblance between the non-ergodicity parameter fk and S(k)  is a natural 
consequence of mode-coupling theories, but should not be regarded as convincing 
evidence for its correctness. The observed resemblance may be quite trivial and not 
necessarily typical for the glassy state. Kinetic theory based on the Enskog generalisation 
of the Boltzmann equation predicts a significant minimum in the extended heat mode 
eigenvalue also at the maximum of S(k)  [ 191. Quantitatively, Bengtzelius’ calculations 
are quite a bit off, especially where the location of the glass transition line is concerned. 
One may argue that this is not very important, regarding the number of approximations 
that were made. It seems that the best we have is theory too complex to trust its numerical 
output, at least for the time being. 

The Lennard-Jones system proves to be quite unstable against crystallisation below 
T = 0.3 Elkg. The region of phase space which contains glassy configurations that remain 
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stable during a sufficiently long time shrinks as the temperature is lowered. If it becomes 
so small that it includes only a small fraction of all phase space accessible by rapid 
quenching, one cannot speak about a glass any more: it is unstable against crystallisation. 
Up to T = 0.3 E/kg,  one can view the Lennard-Jones system as a glass-forming system. 
Below this temperature, we observed that crystallisation becomes dominant. 

One important conceptual question remains to be answered. If there is no singularity, 
what shall we mean by the glass transition? The definition of the glass transition tem- 
perature as that temperature where the shear iiiscosity attains a value of 1O”P is 
unsatisfactory from a theoretical point of view in two ways: 

(i) The value of l O I 3  P is arbitrary. 
(ii) The value of 1013 P does not scale. Our point is that if the glass transition should 

be characterised by a certain threshold viscosity, it should be a reduced threshold 
viscosity; something like the viscosity divided by the viscosity at the melting point. 

We propose the following answer. The glass transition temperature is that tem- 
perature where the normal description of the liquid fails. The practical use of such a 
definition depends on what we consider the normal liquid description. The appearance 
of characteristic non-exponential relaxation occurs already in regions where the viscosity 
has only reached a value of 10 P or so. If we consider these effects as marking the glass 
transition, this definition would lead to a very wide glass transition region, and it would 
not be very practicable. But if these effects are well accounted for by mode-coupling 
theory, we might as well regard the mode-,oupling description as normal liquid descrip- 
tion, just for the reason that non-exponential relaxation effects are noticeable over a 
quite large region of temperature and pressure in the liquid phase, and not only close 
to the glass transition. Then we may characterise the liquid-glass transition by the 
breakdown of the mode-coupling description as in [1-5]. In practice, the breakdown 
may be identified as the point where the critical relaxation time ceases to follow the 
power-law divergence. Then the glass transition temperature lies slightly above the 
temperature where the relaxation time would diverge if the power law is extrapolated. 

On a microscopic level, one may try to identify relaxation mechanisms that become 
dominant over the relaxation processes that determine structural relaxation on the liquid 
side of the glass transition. Of course, the problem is to analyse what the main modes of 
relaxation are. In particular, we note that dynamic processes of activated states are not 
yet included within the framework of mode-coupling models for the glass transition. It 
has been argued that such processes are of crucial importance for our understanding of 
the glass transition [20]. The study of such relaxations requires simulations on timescales 
much longer than presented here. This implies that better glass-forming models than 
the Lennard-Jones system must be investigated and that we need to study liquids at 
higher viscosities than in the present work. That is unfortunate, because such models 
necessarily will be more complicated and less amenable to theoretical analysis. 

Since frustration is the cause of structural slowing down, and is effected by the 
repulsive part of the potential, and the detail of the molecular interaction and micro- 
scopic motion is of minor importance, a computer model may be looked for that still 
describes configurational effects well, but takes into account molecular motion only in 
a very simplified way. What may be found from computer models in order to improve 
on mode-coupling theories are those collective coordinates along which relaxation can 
take place when the simpler motions are frozen out. 
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